Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Size Agnostic Change Point Detection Framework for Evolving Networks (1809.09613v1)

Published 25 Sep 2018 in cs.SI and physics.soc-ph

Abstract: Changes in the structure of observed social and complex networks' structure can indicate a significant underlying change in an organization, or reflect the response of the network to an external event. Automatic detection of change points in evolving networks is rudimentary to the research and the understanding of the effect of such events on networks. Here we present an easy-to-implement and fast framework for change point detection in temporal evolving networks. Unlike previous approaches, our method is size agnostic, and does not require either prior knowledge about the network's size and structure, nor does it require obtaining historical information or nodal identities over time. We use both synthetic data derived from dynamic models and two real datasets: Enron email exchange and Ask-Ubuntu forum. Our framework succeeds with both precision and recall and outperforms previous solutions

Summary

We haven't generated a summary for this paper yet.