Papers
Topics
Authors
Recent
2000 character limit reached

Fine-Tuning VGG Neural Network For Fine-grained State Recognition of Food Images (1809.09529v1)

Published 8 Sep 2018 in cs.CV and cs.LG

Abstract: State recognition of food images can be considered as one of the promising applications of object recognition and fine-grained image classification in computer vision. In this paper, evidence is provided for the power of convolutional neural network (CNN) for food state recognition, even with a small data set. In this study, we fine-tuned a CNN initially trained on a large natural image recognition dataset (Imagenet ILSVRC) and transferred the learned feature representations to the food state recognition task. A small-scale dataset consisting of 5978 images of seven categories was constructed and annotated manually. Data augmentation was applied to increase the size of the data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.