Papers
Topics
Authors
Recent
2000 character limit reached

Diversity maximization in doubling metrics (1809.09521v1)

Published 25 Sep 2018 in cs.DM

Abstract: Diversity maximization is an important geometric optimization problem with many applications in recommender systems, machine learning or search engines among others. A typical diversification problem is as follows: Given a finite metric space $(X,d)$ and a parameter $k \in \mathbb{N}$, find a subset of $k$ elements of $X$ that has maximum diversity. There are many functions that measure diversity. One of the most popular measures, called remote-clique, is the sum of the pairwise distances of the chosen elements. In this paper, we present novel results on three widely used diversity measures: Remote-clique, remote-star and remote-bipartition. Our main result are polynomial time approximation schemes for these three diversification problems under the assumption that the metric space is doubling. This setting has been discussed in the recent literature. The existence of such a PTAS however was left open. Our results also hold in the setting where the distances are raised to a fixed power $q\geq 1$, giving rise to more variants of diversity functions, similar in spirit to the variations of clustering problems depending on the power applied to the distances. Finally, we provide a proof of NP-hardness for remote-clique with squared distances in doubling metric spaces.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.