Papers
Topics
Authors
Recent
2000 character limit reached

Attention Mechanism in Speaker Recognition: What Does It Learn in Deep Speaker Embedding? (1809.09311v1)

Published 25 Sep 2018 in cs.SD and eess.AS

Abstract: This paper presents an experimental study on deep speaker embedding with an attention mechanism that has been found to be a powerful representation learning technique in speaker recognition. In this framework, an attention model works as a frame selector that computes an attention weight for each frame-level feature vector, in accord with which an utterancelevel representation is produced at the pooling layer in a speaker embedding network. In general, an attention model is trained together with the speaker embedding network on a single objective function, and thus those two components are tightly bound to one another. In this paper, we consider the possibility that the attention model might be decoupled from its parent network and assist other speaker embedding networks and even conventional i-vector extractors. This possibility is demonstrated through a series of experiments on a NIST Speaker Recognition Evaluation (SRE) task, with 9.0% EER reduction and 3.8% min_Cprimary reduction when the attention weights are applied to i-vector extraction. Another experiment shows that DNN-based soft voice activity detection (VAD) can be effectively combined with the attention mechanism to yield further reduction of minCprimary by 6.6% and 1.6% in deep speaker embedding and i-vector systems, respectively.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.