Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

EpiRL: A Reinforcement Learning Agent to Facilitate Epistasis Detection (1809.09143v1)

Published 24 Sep 2018 in cs.LG, q-bio.QM, and stat.ML

Abstract: Epistasis (gene-gene interaction) is crucial to predicting genetic disease. Our work tackles the computational challenges faced by previous works in epistasis detection by modeling it as a one-step Markov Decision Process where the state is genome data, the actions are the interacted genes, and the reward is an interaction measurement for the selected actions. A reinforcement learning agent using policy gradient method then learns to discover a set of highly interacted genes.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.