Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Incorporating Luminance, Depth and Color Information by a Fusion-based Network for Semantic Segmentation (1809.09077v3)

Published 24 Sep 2018 in cs.CV

Abstract: Semantic segmentation has made encouraging progress due to the success of deep convolutional networks in recent years. Meanwhile, depth sensors become prevalent nowadays, so depth maps can be acquired more easily. However, there are few studies that focus on the RGB-D semantic segmentation task. Exploiting the depth information effectiveness to improve performance is a challenge. In this paper, we propose a novel solution named LDFNet, which incorporates Luminance, Depth and Color information by a fusion-based network. It includes a sub-network to process depth maps and employs luminance images to assist the depth information in processes. LDFNet outperforms the other state-of-art systems on the Cityscapes dataset, and its inference speed is faster than most of the existing networks. The experimental results show the effectiveness of the proposed multi-modal fusion network and its potential for practical applications.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.