Second-order Guarantees of Distributed Gradient Algorithms (1809.08694v5)
Abstract: We consider distributed smooth nonconvex unconstrained optimization over networks, modeled as a connected graph. We examine the behavior of distributed gradient-based algorithms near strict saddle points. Specifically, we establish that (i) the renowned Distributed Gradient Descent (DGD) algorithm likely converges to a neighborhood of a Second-order Stationary (SoS) solution; and (ii) the more recent class of distributed algorithms based on gradient tracking--implementable also over digraphs--likely converges to exact SoS solutions, thus avoiding (strict) saddle-points. Furthermore, new convergence rate results to first-order critical points is established for the latter class of algorithms.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.