Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 68 tok/s
Gemini 2.5 Flash 155 tok/s Pro
Gemini 2.5 Pro 51 tok/s Pro
Kimi K2 187 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Detecting Hate Speech and Offensive Language on Twitter using Machine Learning: An N-gram and TFIDF based Approach (1809.08651v1)

Published 23 Sep 2018 in cs.CL

Abstract: Toxic online content has become a major issue in today's world due to an exponential increase in the use of internet by people of different cultures and educational background. Differentiating hate speech and offensive language is a key challenge in automatic detection of toxic text content. In this paper, we propose an approach to automatically classify tweets on Twitter into three classes: hateful, offensive and clean. Using Twitter dataset, we perform experiments considering n-grams as features and passing their term frequency-inverse document frequency (TFIDF) values to multiple machine learning models. We perform comparative analysis of the models considering several values of n in n-grams and TFIDF normalization methods. After tuning the model giving the best results, we achieve 95.6% accuracy upon evaluating it on test data. We also create a module which serves as an intermediate between user and Twitter.

Citations (112)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.