Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Accelerate CU Partition in HEVC using Large-Scale Convolutional Neural Network (1809.08617v1)

Published 23 Sep 2018 in cs.CV

Abstract: High efficiency video coding (HEVC) suffers high encoding computational complexity, partly attributed to the rate-distortion optimization quad-tree search in CU partition decision. Therefore, we propose a novel two-stage CU partition decision approach in HEVC intra-mode. In the proposed approach, CNN-based algorithm is designed to decide CU partition mode precisely in three depths. In order to alleviate computational complexity further, an auxiliary earl-termination mechanism is also proposed to filter obvious homogeneous CUs out of the subsequent CNN-based algorithm. Experimental results show that the proposed approach achieves about 37% encoding time saving on average and insignificant BD-Bitrate rise compared with the original HEVC encoder.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.