Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

DT-LET: Deep Transfer Learning by Exploring where to Transfer (1809.08541v1)

Published 23 Sep 2018 in cs.LG and stat.ML

Abstract: Previous transfer learning methods based on deep network assume the knowledge should be transferred between the same hidden layers of the source domain and the target domains. This assumption doesn't always hold true, especially when the data from the two domains are heterogeneous with different resolutions. In such case, the most suitable numbers of layers for the source domain data and the target domain data would differ. As a result, the high level knowledge from the source domain would be transferred to the wrong layer of target domain. Based on this observation, "where to transfer" proposed in this paper should be a novel research frontier. We propose a new mathematic model named DT-LET to solve this heterogeneous transfer learning problem. In order to select the best matching of layers to transfer knowledge, we define specific loss function to estimate the corresponding relationship between high-level features of data in the source domain and the target domain. To verify this proposed cross-layer model, experiments for two cross-domain recognition/classification tasks are conducted, and the achieved superior results demonstrate the necessity of layer correspondence searching.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.