Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Automated Classification of Sleep Stages and EEG Artifacts in Mice with Deep Learning (1809.08443v1)

Published 22 Sep 2018 in q-bio.QM and cs.LG

Abstract: Sleep scoring is a necessary and time-consuming task in sleep studies. In animal models (such as mice) or in humans, automating this tedious process promises to facilitate long-term studies and to promote sleep biology as a data-driven field. We introduce a deep neural network model that is able to predict different states of consciousness (Wake, Non-REM, REM) in mice from EEG and EMG recordings with excellent scoring results for out-of-sample data. Predictions are made on epochs of 4 seconds length, and epochs are classified as artifact-free or not. The model architecture draws on recent advances in deep learning and in convolutional neural networks research. In contrast to previous approaches towards automated sleep scoring, our model does not rely on manually defined features of the data but learns predictive features automatically. We expect deep learning models like ours to become widely applied in different fields, automating many repetitive cognitive tasks that were previously difficult to tackle.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.