Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Pose-Guided Multi-Granularity Attention Network for Text-Based Person Search (1809.08440v3)

Published 22 Sep 2018 in cs.CV

Abstract: Text-based person search aims to retrieve the corresponding person images in an image database by virtue of a describing sentence about the person, which poses great potential for various applications such as video surveillance. Extracting visual contents corresponding to the human description is the key to this cross-modal matching problem. Moreover, correlated images and descriptions involve different granularities of semantic relevance, which is usually ignored in previous methods. To exploit the multilevel corresponding visual contents, we propose a pose-guided multi-granularity attention network (PMA). Firstly, we propose a coarse alignment network (CA) to select the related image regions to the global description by a similarity-based attention. To further capture the phrase-related visual body part, a fine-grained alignment network (FA) is proposed, which employs pose information to learn latent semantic alignment between visual body part and textual noun phrase. To verify the effectiveness of our model, we perform extensive experiments on the CUHK Person Description Dataset (CUHK-PEDES) which is currently the only available dataset for text-based person search. Experimental results show that our approach outperforms the state-of-the-art methods by 15 \% in terms of the top-1 metric.

Citations (118)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.