Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Variational Collaborative Learning for User Probabilistic Representation (1809.08400v1)

Published 22 Sep 2018 in cs.LG and stat.ML

Abstract: Collaborative filtering (CF) has been successfully employed by many modern recommender systems. Conventional CF-based methods use the user-item interaction data as the sole information source to recommend items to users. However, CF-based methods are known for suffering from cold start problems and data sparsity problems. Hybrid models that utilize auxiliary information on top of interaction data have increasingly gained attention. A few "collaborative learning"-based models, which tightly bridges two heterogeneous learners through mutual regularization, are recently proposed for the hybrid recommendation. However, the "collaboration" in the existing methods are actually asynchronous due to the alternative optimization of the two learners. Leveraging the recent advances in variational autoencoder~(VAE), we here propose a model consisting of two streams of mutual linked VAEs, named variational collaborative model (VCM). Unlike the mutual regularization used in previous works where two learners are optimized asynchronously, VCM enables a synchronous collaborative learning mechanism. Besides, the two stream VAEs setup allows VCM to fully leverages the Bayesian probabilistic representations in collaborative learning. Extensive experiments on three real-life datasets have shown that VCM outperforms several state-of-art methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.