Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sampler Design for Bayesian Personalized Ranking by Leveraging View Data (1809.08162v1)

Published 21 Sep 2018 in cs.IR

Abstract: Bayesian Personalized Ranking (BPR) is a representative pairwise learning method for optimizing recommendation models. It is widely known that the performance of BPR depends largely on the quality of negative sampler. In this paper, we make two contributions with respect to BPR. First, we find that sampling negative items from the whole space is unnecessary and may even degrade the performance. Second, focusing on the purchase feedback of E-commerce, we propose an effective sampler for BPR by leveraging the additional view data. In our proposed sampler, users' viewed interactions are considered as an intermediate feedback between those purchased and unobserved interactions. The pairwise rankings of user preference among these three types of interactions are jointly learned, and a user-oriented weighting strategy is considered during learning process, which is more effective and flexible. Compared to the vanilla BPR that applies a uniform sampler on all candidates, our view-enhanced sampler enhances BPR with a relative improvement over 37.03% and 16.40% on two real-world datasets. Our study demonstrates the importance of considering users' additional feedback when modeling their preference on different items, which avoids sampling negative items indiscriminately and inefficiently.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.