Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Simulator Calibration under Covariate Shift with Kernels (1809.08159v4)

Published 21 Sep 2018 in stat.ML and cs.LG

Abstract: We propose a novel calibration method for computer simulators, dealing with the problem of covariate shift. Covariate shift is the situation where input distributions for training and test are different, and ubiquitous in applications of simulations. Our approach is based on Bayesian inference with kernel mean embedding of distributions, and on the use of an importance-weighted reproducing kernel for covariate shift adaptation. We provide a theoretical analysis for the proposed method, including a novel theoretical result for conditional mean embedding, as well as empirical investigations suggesting its effectiveness in practice. The experiments include calibration of a widely used simulator for industrial manufacturing processes, where we also demonstrate how the proposed method may be useful for sensitivity analysis of model parameters.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.