Closeness of Solutions for Singularly Perturbed Systems via Averaging (1809.07887v1)
Abstract: This paper studies the behavior of singularly perturbed nonlinear differential equations with boundary-layer solutions that do not necessarily converge to an equilibrium. Using the average of the fast variable and assuming the boundary layer solutions converge to a bounded set, results on the closeness of solutions of the singularly perturbed system to the solutions of the reduced average and boundary layer systems over a finite time interval are presented. The closeness of solutions error is shown to be of order O(\sqrt(\epsilon)), where \epsilon is the perturbation parameter.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.