Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Logically-Constrained Neural Fitted Q-Iteration (1809.07823v4)

Published 20 Sep 2018 in cs.LG, cs.FL, cs.LO, and stat.ML

Abstract: We propose a method for efficient training of Q-functions for continuous-state Markov Decision Processes (MDPs) such that the traces of the resulting policies satisfy a given Linear Temporal Logic (LTL) property. LTL, a modal logic, can express a wide range of time-dependent logical properties (including "safety") that are quite similar to patterns in natural language. We convert the LTL property into a limit deterministic Buchi automaton and construct an on-the-fly synchronised product MDP. The control policy is then synthesised by defining an adaptive reward function and by applying a modified neural fitted Q-iteration algorithm to the synchronised structure, assuming that no prior knowledge is available from the original MDP. The proposed method is evaluated in a numerical study to test the quality of the generated control policy and is compared with conventional methods for policy synthesis such as MDP abstraction (Voronoi quantizer) and approximate dynamic programming (fitted value iteration).

Citations (41)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube