Papers
Topics
Authors
Recent
2000 character limit reached

Biorthogonal Extended Krylov Subspace Methods (1809.07660v2)

Published 20 Sep 2018 in math.NA and cs.NA

Abstract: A general framework for oblique projections of nonhermitian matrices onto rational Krylov subspaces is developed. To obtain this framework we revisit the classical rational Krylov subspace algorithm and prove that the projected matrix can be written efficiently as a structured pencil, where the structure can take several forms, such as Hessenberg or inverse Hessenberg. One specific instance of the structures appearing in this framework for oblique projections is a tridiagonal pencil. This is a direct generalization of the classical biorthogonal Krylov subspace method where the projection becomes a single nonhermitian tridiagonal matrix and of the Hessenberg pencil representation for rational Krylov subspaces. Based on the compact storage of this tridiagonal pencil in the biorthogonal setting, we can develop short recurrences. Numerical experiments confirm the validity of the approach.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.