Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Prosocial or Selfish? Agents with different behaviors for Contract Negotiation using Reinforcement Learning (1809.07066v1)

Published 19 Sep 2018 in cs.LG, cs.AI, cs.MA, and stat.ML

Abstract: We present an effective technique for training deep learning agents capable of negotiating on a set of clauses in a contract agreement using a simple communication protocol. We use Multi Agent Reinforcement Learning to train both agents simultaneously as they negotiate with each other in the training environment. We also model selfish and prosocial behavior to varying degrees in these agents. Empirical evidence is provided showing consistency in agent behaviors. We further train a meta agent with a mixture of behaviors by learning an ensemble of different models using reinforcement learning. Finally, to ascertain the deployability of the negotiating agents, we conducted experiments pitting the trained agents against human players. Results demonstrate that the agents are able to hold their own against human players, often emerging as winners in the negotiation. Our experiments demonstrate that the meta agent is able to reasonably emulate human behavior.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.