Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Computing Wasserstein Distance for Persistence Diagrams on a Quantum Computer (1809.06433v2)

Published 17 Sep 2018 in cs.CG, cs.ET, and quant-ph

Abstract: Persistence diagrams are a useful tool from topological data analysis which can be used to provide a concise description of a filtered topological space. What makes them even more useful in practice is that they come with a notion of a metric, the Wasserstein distance (closely related to but not the same as the homonymous metric from probability theory). Further, this metric provides a notion of stability; that is, small noise in the input causes at worst small differences in the output. In this paper, we show that the Wasserstein distance for persistence diagrams can be computed through quantum annealing. We provide a formulation of the problem as a Quadratic Unconstrained Binary Optimization problem, or QUBO, and prove correctness. Finally, we test our algorithm, exploring parameter choices and problem size capabilities, using a D-Wave 2000Q quantum annealing computer.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.