Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

$C^{3}LES$: Codes for Coded Computation that Leverage Stragglers (1809.06242v1)

Published 17 Sep 2018 in cs.IT and math.IT

Abstract: In distributed computing systems, it is well recognized that worker nodes that are slow (called stragglers) tend to dominate the overall job execution time. Coded computation utilizes concepts from erasure coding to mitigate the effect of stragglers by running "coded" copies of tasks comprising a job. Stragglers are typically treated as erasures in this process. While this is useful, there are issues with applying, e.g., MDS codes in a straightforward manner. Specifically, several applications such as matrix-vector products deal with sparse matrices. MDS codes typically require dense linear combinations of submatrices of the original matrix which destroy their inherent sparsity. This is problematic as it results in significantly higher processing times for computing the submatrix-vector products in coded computation. Furthermore, it also ignores partial computations at stragglers. In this work, we propose a fine-grained model that quantifies the level of non-trivial coding needed to obtain the benefits of coding in matrix-vector computation. Simultaneously, it allows us to leverage partial computations performed by the straggler nodes. For this model, we propose and evaluate several code designs and discuss their properties.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube