Papers
Topics
Authors
Recent
2000 character limit reached

Meta-Embedding as Auxiliary Task Regularization (1809.05886v2)

Published 16 Sep 2018 in cs.CL and cs.LG

Abstract: Word embeddings have been shown to benefit from ensambling several word embedding sources, often carried out using straightforward mathematical operations over the set of word vectors. More recently, self-supervised learning has been used to find a lower-dimensional representation, similar in size to the individual word embeddings within the ensemble. However, these methods do not use the available manually labeled datasets that are often used solely for the purpose of evaluation. We propose to reconstruct an ensemble of word embeddings as an auxiliary task that regularises a main task while both tasks share the learned meta-embedding layer. We carry out intrinsic evaluation (6 word similarity datasets and 3 analogy datasets) and extrinsic evaluation (4 downstream tasks). For intrinsic task evaluation, supervision comes from various labeled word similarity datasets. Our experimental results show that the performance is improved for all word similarity datasets when compared to self-supervised learning methods with a mean increase of $11.33$ in Spearman correlation. Specifically, the proposed method shows the best performance in 4 out of 6 of word similarity datasets when using a cosine reconstruction loss and Brier's word similarity loss. Moreover, improvements are also made when performing word meta-embedding reconstruction in sequence tagging and sentence meta-embedding for sentence classification.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.