Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Meta-Embedding as Auxiliary Task Regularization (1809.05886v2)

Published 16 Sep 2018 in cs.CL and cs.LG

Abstract: Word embeddings have been shown to benefit from ensambling several word embedding sources, often carried out using straightforward mathematical operations over the set of word vectors. More recently, self-supervised learning has been used to find a lower-dimensional representation, similar in size to the individual word embeddings within the ensemble. However, these methods do not use the available manually labeled datasets that are often used solely for the purpose of evaluation. We propose to reconstruct an ensemble of word embeddings as an auxiliary task that regularises a main task while both tasks share the learned meta-embedding layer. We carry out intrinsic evaluation (6 word similarity datasets and 3 analogy datasets) and extrinsic evaluation (4 downstream tasks). For intrinsic task evaluation, supervision comes from various labeled word similarity datasets. Our experimental results show that the performance is improved for all word similarity datasets when compared to self-supervised learning methods with a mean increase of $11.33$ in Spearman correlation. Specifically, the proposed method shows the best performance in 4 out of 6 of word similarity datasets when using a cosine reconstruction loss and Brier's word similarity loss. Moreover, improvements are also made when performing word meta-embedding reconstruction in sequence tagging and sentence meta-embedding for sentence classification.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.