Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

T* : A Heuristic Search Based Algorithm for Motion Planning with Temporal Goals (1809.05817v3)

Published 16 Sep 2018 in cs.RO

Abstract: Motion planning is the core problem to solve for developing any application involving an autonomous mobile robot. The fundamental motion planning problem involves generating a trajectory for a robot for point-to-point navigation while avoiding obstacles. Heuristic-based search algorithms like A* have been shown to be extremely efficient in solving such planning problems. Recently, there has been an increased interest in specifying complex motion plans using temporal logic. In the state-of-the-art algorithm, the temporal logic motion planning problem is reduced to a graph search problem and Dijkstra's shortest path algorithm is used to compute the optimal trajectory satisfying the specification. The A* algorithm when used with a proper heuristic for the distance from the destination can generate an optimal path in a graph efficiently. The primary challenge for using A* algorithm in temporal logic path planning is that there is no notion of a single destination state for the robot. In this thesis, we present a novel motion planning algorithm T* that uses the A* search procedure in temporal logic path planning \emph{opportunistically} to generate an optimal trajectory satisfying a temporal logic query. Our experimental results demonstrate that T* achieves an order of magnitude improvement over the state-of-the-art algorithm to solve many temporal logic motion planning problems.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.