Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Sampled Policy Gradient for Learning to Play the Game Agar.io (1809.05763v1)

Published 15 Sep 2018 in cs.AI

Abstract: In this paper, a new offline actor-critic learning algorithm is introduced: Sampled Policy Gradient (SPG). SPG samples in the action space to calculate an approximated policy gradient by using the critic to evaluate the samples. This sampling allows SPG to search the action-Q-value space more globally than deterministic policy gradient (DPG), enabling it to theoretically avoid more local optima. SPG is compared to Q-learning and the actor-critic algorithms CACLA and DPG in a pellet collection task and a self play environment in the game Agar.io. The online game Agar.io has become massively popular on the internet due to intuitive game design and the ability to instantly compete against players around the world. From the point of view of artificial intelligence this game is also very intriguing: The game has a continuous input and action space and allows to have diverse agents with complex strategies compete against each other. The experimental results show that Q-Learning and CACLA outperform a pre-programmed greedy bot in the pellet collection task, but all algorithms fail to outperform this bot in a fighting scenario. The SPG algorithm is analyzed to have great extendability through offline exploration and it matches DPG in performance even in its basic form without extensive sampling.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube