Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficient Rank Minimization via Solving Non-convexPenalties by Iterative Shrinkage-Thresholding Algorithm (1809.05292v1)

Published 14 Sep 2018 in cs.LG, cs.CV, and stat.ML

Abstract: Rank minimization (RM) is a wildly investigated task of finding solutions by exploiting low-rank structure of parameter matrices. Recently, solving RM problem by leveraging non-convex relaxations has received significant attention. It has been demonstrated by some theoretical and experimental work that non-convex relaxation, e.g. Truncated Nuclear Norm Regularization (TNNR) and Reweighted Nuclear Norm Regularization (RNNR), can provide a better approximation of original problems than convex relaxations. However, designing an efficient algorithm with theoretical guarantee remains a challenging problem. In this paper, we propose a simple but efficient proximal-type method, namely Iterative Shrinkage-Thresholding Algorithm(ISTA), with concrete analysis to solve rank minimization problems with both non-convex weighted and reweighted nuclear norm as low-rank regularizers. Theoretically, the proposed method could converge to the critical point under very mild assumptions with the rate in the order of $O(1/T)$. Moreover, the experimental results on both synthetic data and real world data sets show that proposed algorithm outperforms state-of-arts in both efficiency and accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube