Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Benchmarking and Optimization of Gradient Boosting Decision Tree Algorithms (1809.04559v3)

Published 12 Sep 2018 in cs.LG and stat.ML

Abstract: Gradient boosting decision trees (GBDTs) have seen widespread adoption in academia, industry and competitive data science due to their state-of-the-art performance in many machine learning tasks. One relative downside to these models is the large number of hyper-parameters that they expose to the end-user. To maximize the predictive power of GBDT models, one must either manually tune the hyper-parameters, or utilize automated techniques such as those based on Bayesian optimization. Both of these approaches are time-consuming since they involve repeatably training the model for different sets of hyper-parameters. A number of software GBDT packages have started to offer GPU acceleration which can help to alleviate this problem. In this paper, we consider three such packages: XGBoost, LightGBM and Catboost. Firstly, we evaluate the performance of the GPU acceleration provided by these packages using large-scale datasets with varying shapes, sparsities and learning tasks. Then, we compare the packages in the context of hyper-parameter optimization, both in terms of how quickly each package converges to a good validation score, and in terms of generalization performance.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.