Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Visual QA Devil in the Details: The Impact of Early Fusion and Batch Norm on CLEVR (1809.04482v1)

Published 11 Sep 2018 in cs.CV, cs.CL, and cs.LG

Abstract: Visual QA is a pivotal challenge for higher-level reasoning, requiring understanding language, vision, and relationships between many objects in a scene. Although datasets like CLEVR are designed to be unsolvable without such complex relational reasoning, some surprisingly simple feed-forward, "holistic" models have recently shown strong performance on this dataset. These models lack any kind of explicit iterative, symbolic reasoning procedure, which are hypothesized to be necessary for counting objects, narrowing down the set of relevant objects based on several attributes, etc. The reason for this strong performance is poorly understood. Hence, our work analyzes such models, and finds that minor architectural elements are crucial to performance. In particular, we find that \textit{early fusion} of language and vision provides large performance improvements. This contrasts with the late fusion approaches popular at the dawn of Visual QA. We propose a simple module we call Multimodal Core, which we hypothesize performs the fundamental operations for multimodal tasks. We believe that understanding why these elements are so important to complex question answering will aid the design of better-performing algorithms for Visual QA while minimizing hand-engineering effort.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.