Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finding Cheeger Cuts in Hypergraphs via Heat Equation (1809.04396v2)

Published 12 Sep 2018 in cs.DS, cs.DM, cs.NA, math.AP, math.NA, and math.SP

Abstract: Cheeger's inequality states that a tightly connected subset can be extracted from a graph $G$ using an eigenvector of the normalized Laplacian associated with $G$. More specifically, we can compute a subset with conductance $O(\sqrt{\phi_G})$, where $\phi_G$ is the minimum conductance of a set in $G$. It has recently been shown that Cheeger's inequality can be extended to hypergraphs. However, as the normalized Laplacian of a hypergraph is no longer a matrix, we can only approximate to its eigenvectors; this causes a loss in the conductance of the obtained subset. To address this problem, we here consider the heat equation on hypergraphs, which is a differential equation exploiting the normalized Laplacian. We show that the heat equation has a unique solution and that we can extract a subset with conductance $\sqrt{\phi_G}$ from the solution. An analogous result also holds for directed graphs.

Citations (16)

Summary

We haven't generated a summary for this paper yet.