Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Finding Cheeger Cuts in Hypergraphs via Heat Equation (1809.04396v2)

Published 12 Sep 2018 in cs.DS, cs.DM, cs.NA, math.AP, math.NA, and math.SP

Abstract: Cheeger's inequality states that a tightly connected subset can be extracted from a graph $G$ using an eigenvector of the normalized Laplacian associated with $G$. More specifically, we can compute a subset with conductance $O(\sqrt{\phi_G})$, where $\phi_G$ is the minimum conductance of a set in $G$. It has recently been shown that Cheeger's inequality can be extended to hypergraphs. However, as the normalized Laplacian of a hypergraph is no longer a matrix, we can only approximate to its eigenvectors; this causes a loss in the conductance of the obtained subset. To address this problem, we here consider the heat equation on hypergraphs, which is a differential equation exploiting the normalized Laplacian. We show that the heat equation has a unique solution and that we can extract a subset with conductance $\sqrt{\phi_G}$ from the solution. An analogous result also holds for directed graphs.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.