Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Knowledge-Aware Conversational Semantic Parsing Over Web Tables (1809.04271v1)

Published 12 Sep 2018 in cs.CL

Abstract: Conversational semantic parsing over tables requires knowledge acquiring and reasoning abilities, which have not been well explored by current state-of-the-art approaches. Motivated by this fact, we propose a knowledge-aware semantic parser to improve parsing performance by integrating various types of knowledge. In this paper, we consider three types of knowledge, including grammar knowledge, expert knowledge, and external resource knowledge. First, grammar knowledge empowers the model to effectively replicate previously generated logical form, which effectively handles the co-reference and ellipsis phenomena in conversation Second, based on expert knowledge, we propose a decomposable model, which is more controllable compared with traditional end-to-end models that put all the burdens of learning on trial-and-error in an end-to-end way. Third, external resource knowledge, i.e., provided by a pre-trained LLM or an entity typing model, is used to improve the representation of question and table for a better semantic understanding. We conduct experiments on the SequentialQA dataset. Results show that our knowledge-aware model outperforms the state-of-the-art approaches. Incremental experimental results also prove the usefulness of various knowledge. Further analysis shows that our approach has the ability to derive the meaning representation of a context-dependent utterance by leveraging previously generated outcomes.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.