Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

End-to-end Image Captioning Exploits Multimodal Distributional Similarity (1809.04144v1)

Published 11 Sep 2018 in cs.CV

Abstract: We hypothesize that end-to-end neural image captioning systems work seemingly well because they exploit and learn distributional similarity' in a multimodal feature space by mapping a test image to similar training images in this space and generating a caption from the same space. To validate our hypothesis, we focus on theimage' side of image captioning, and vary the input image representation but keep the RNN text generation component of a CNN-RNN model constant. Our analysis indicates that image captioning models (i) are capable of separating structure from noisy input representations; (ii) suffer virtually no significant performance loss when a high dimensional representation is compressed to a lower dimensional space; (iii) cluster images with similar visual and linguistic information together. Our findings indicate that our distributional similarity hypothesis holds. We conclude that regardless of the image representation used image captioning systems seem to match images and generate captions in a learned joint image-text semantic subspace.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.