Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multivariate Brenier cumulative distribution functions and their application to non-parametric testing (1809.04090v1)

Published 11 Sep 2018 in math.ST and stat.TH

Abstract: In this work we introduce a novel approach of construction of multivariate cumulative distribution functions, based on cyclical-monotone mapping of an original measure $\mu \in \mathcal{P}{ac}_2(\mathbb{R}d)$ to some target measure $\nu \in \mathcal{P}{ac}_2(\mathbb{R}d)$ , supported on a convex compact subset of $\mathbb{R}d$. This map is referred to as $\nu$-Brenier distribution function ($\nu$-BDF), whose counterpart under the one-dimensional setting $d = 1$ is an ordinary CDF, with $\nu$ selected as $\mathcal{U}[0, 1]$, a uniform distribution on $[0, 1]$. Following one-dimensional frame-work, a multivariate analogue of Glivenko-Cantelli theorem is provided. A practical applicability of the theory is then illustrated by the development of a non-parametric pivotal two-sample test, that is rested on $2$-Wasserstein distance.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.