Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Solving Imperfect-Information Games via Discounted Regret Minimization (1809.04040v3)

Published 11 Sep 2018 in cs.GT and cs.AI

Abstract: Counterfactual regret minimization (CFR) is a family of iterative algorithms that are the most popular and, in practice, fastest approach to approximately solving large imperfect-information games. In this paper we introduce novel CFR variants that 1) discount regrets from earlier iterations in various ways (in some cases differently for positive and negative regrets), 2) reweight iterations in various ways to obtain the output strategies, 3) use a non-standard regret minimizer and/or 4) leverage "optimistic regret matching". They lead to dramatically improved performance in many settings. For one, we introduce a variant that outperforms CFR+, the prior state-of-the-art algorithm, in every game tested, including large-scale realistic settings. CFR+ is a formidable benchmark: no other algorithm has been able to outperform it. Finally, we show that, unlike CFR+, many of the important new variants are compatible with modern imperfect-information-game pruning techniques and one is also compatible with sampling in the game tree.

Citations (158)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.