Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Non-blind Image Restoration Based on Convolutional Neural Network (1809.03757v1)

Published 11 Sep 2018 in cs.CV

Abstract: Blind image restoration processors based on convolutional neural network (CNN) are intensively researched because of their high performance. However, they are too sensitive to the perturbation of the degradation model. They easily fail to restore the image whose degradation model is slightly different from the trained degradation model. In this paper, we propose a non-blind CNN-based image restoration processor, aiming to be robust against a perturbation of the degradation model compared to the blind restoration processor. Experimental comparisons demonstrate that the proposed non-blind CNN-based image restoration processor can robustly restore images compared to existing blind CNN-based image restoration processors.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.