Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploiting the structure effectively and efficiently in low rank matrix recovery (1809.03652v1)

Published 11 Sep 2018 in math.NA and cs.NA

Abstract: Low rank model arises from a wide range of applications, including machine learning, signal processing, computer algebra, computer vision, and imaging science. Low rank matrix recovery is about reconstructing a low rank matrix from incomplete measurements. In this survey we review recent developments on low rank matrix recovery, focusing on three typical scenarios: matrix sensing, matrix completion and phase retrieval. An overview of effective and efficient approaches for the problem is given, including nuclear norm minimization, projected gradient descent based on matrix factorization, and Riemannian optimization based on the embedded manifold of low rank matrices. Numerical recipes of different approaches are emphasized while accompanied by the corresponding theoretical recovery guarantees.

Citations (13)

Summary

We haven't generated a summary for this paper yet.