Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

SpRRAM: A Predefined Sparsity Based Memristive Neuromorphic Circuit for Low Power Application (1809.03476v1)

Published 10 Sep 2018 in cs.ET

Abstract: In this paper, we propose an efficient predefined structured sparsity-based ex-situ training framework for a hybrid CMOS-memristive neuromorphic hardware for deep neural network to significantly lower the power consumption and computational complexity and improve scalability. The structure is verified on a wide range of datasets including MNIST handwritten recognition, breast cancer prediction, and mobile health monitoring. The results of this study show that compared to its fully connected version, the proposed structure provides significant power reduction while maintaining high classification accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.