Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Stable Minutia Descriptor based on Gabor Wavelet and Linear Discriminant Analysis (1809.03326v1)

Published 6 Sep 2018 in cs.CV and stat.AP

Abstract: The minutia descriptor which describes characteristics of minutia, plays a major role in fingerprint recognition. Typically, fingerprint recognition systems employ minutia descriptors to find potential correspondence between minutiae, and they use similarity between two minutia descriptors to calculate overall similarity between two fingerprint images. A good minutia descriptor can improve recognition accuracy of fingerprint recognition system and largely reduce comparing time. A good minutia descriptor should have high ability to distinguish between different minutiae and at the same time should be robust in difficult conditions including poor quality image and small size image. It also should be effective in computational cost of similarity among descriptors. In this paper, a robust minutia descriptor is constructed using Gabor wavelet and linear discriminant analysis. This minutia descriptor has high distinguishing ability, stability and simple comparing method. Experimental results on FVC2004 and FVC2006 databases show that the proposed minutia descriptor is very effective in fingerprint recognition.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.