Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Guiding the Creation of Deep Learning-based Object Detectors (1809.03322v1)

Published 6 Sep 2018 in cs.CV, cs.LG, and stat.ML

Abstract: Object detection is a computer vision field that has applications in several contexts ranging from biomedicine and agriculture to security. In the last years, several deep learning techniques have greatly improved object detection models. Among those techniques, we can highlight the YOLO approach, that allows the construction of accurate models that can be employed in real-time applications. However, as most deep learning techniques, YOLO has a steep learning curve and creating models using this approach might be challenging for non-expert users. In this work, we tackle this problem by constructing a suite of Jupyter notebooks that democratizes the construction of object detection models using YOLO. The suitability of our approach has been proven with a dataset of stomata images where we have achieved a mAP of 90.91%.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.