Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

High order algorithms for Fokker-Planck equation with Caputo-Fabrizio fractional derivative (1809.03263v3)

Published 10 Sep 2018 in math.NA and cs.NA

Abstract: Based on the continuous time random walk, we derive the Fokker-Planck equations with Caputo-Fabrizio fractional derivative, which can effectively model a variety of physical phenomena, especially, the material heterogeneities and structures with different scales. Extending the discretizations for fractional substantial calculus [Chen and Deng, \emph{ ESAIM: M2AN.} \textbf{49}, (2015), 373--394], we first provide the numerical discretizations of the Caputo-Fabrizio fractional derivative with the global truncation error $\mathcal{O}(\tau\nu)$ $ (\nu=1,2,3,4)$. Then we use the derived schemes to solve the Caputo-Fabrizio fractional diffusion equation. By analysing the positive definiteness of the stiffness matrices of the discretized Caputo-Fabrizio operator, the unconditional stability and the convergence with the global truncation error $\mathcal{O}(\tau2+h2)$ are theoretically proved and numerical verified.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.