Papers
Topics
Authors
Recent
2000 character limit reached

A Social Recommender System based on Bhattacharyya Coefficient (1809.03047v3)

Published 9 Sep 2018 in cs.SI

Abstract: Recommender systems play a significant role in providing the appropriate data for each user among a huge amount of information. One of the important roles of a recommender system is to predict the preference of each user to some specific data. Some of these systems concentrate on user-item networks that each user rates some items. The main step for item recommendation is to predict the rate of unrated items. Each recommender system utilizes different criteria such as the similarity between users or social relations in the process of rate prediction. As social connections of each user affect his behaviors, it can be a valuable source to use in rate prediction. In this paper, we will provide a new social recommender system which uses Bhattacharyya coefficient in similarity computing to be able to evaluate similarity in sparse data and between users without co-rated items as well as integrating social ties into the rating prediction process.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.