Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strong Coresets for k-Median and Subspace Approximation: Goodbye Dimension (1809.02961v2)

Published 9 Sep 2018 in cs.DS

Abstract: We obtain the first strong coresets for the $k$-median and subspace approximation problems with sum of distances objective function, on $n$ points in $d$ dimensions, with a number of weighted points that is independent of both $n$ and $d$; namely, our coresets have size $\text{poly}(k/\epsilon)$. A strong coreset $(1+\epsilon)$-approximates the cost function for all possible sets of centers simultaneously. We also give efficient $\text{nnz}(A) + (n+d)\text{poly}(k/\epsilon) + \exp(\text{poly}(k/\epsilon))$ time algorithms for computing these coresets. We obtain the result by introducing a new dimensionality reduction technique for coresets that significantly generalizes an earlier result of Feldman, Sohler and Schmidt \cite{FSS13} for squared Euclidean distances to sums of $p$-th powers of Euclidean distances for constant $p\ge1$.

Citations (81)

Summary

We haven't generated a summary for this paper yet.