Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Cellular automata as convolutional neural networks (1809.02942v2)

Published 9 Sep 2018 in nlin.CG, cond-mat.dis-nn, cs.NE, and physics.comp-ph

Abstract: Deep learning techniques have recently demonstrated broad success in predicting complex dynamical systems ranging from turbulence to human speech, motivating broader questions about how neural networks encode and represent dynamical rules. We explore this problem in the context of cellular automata (CA), simple dynamical systems that are intrinsically discrete and thus difficult to analyze using standard tools from dynamical systems theory. We show that any CA may readily be represented using a convolutional neural network with a network-in-network architecture. This motivates our development of a general convolutional multilayer perceptron architecture, which we find can learn the dynamical rules for arbitrary CA when given videos of the CA as training data. In the limit of large network widths, we find that training dynamics are nearly identical across replicates, and that common patterns emerge in the structure of networks trained on different CA rulesets. We train ensembles of networks on randomly-sampled CA, and we probe how the trained networks internally represent the CA rules using an information-theoretic technique based on distributions of layer activation patterns. We find that CA with simpler rule tables produce trained networks with hierarchical structure and layer specialization, while more complex CA produce shallower representations---illustrating how the underlying complexity of the CA's rules influences the specificity of these internal representations. Our results suggest how the entropy of a physical process can affect its representation when learned by neural networks.

Citations (90)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube