Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Probabilistic Prediction of Interactive Driving Behavior via Hierarchical Inverse Reinforcement Learning (1809.02926v1)

Published 9 Sep 2018 in cs.LG, cs.AI, cs.RO, and stat.ML

Abstract: Autonomous vehicles (AVs) are on the road. To safely and efficiently interact with other road participants, AVs have to accurately predict the behavior of surrounding vehicles and plan accordingly. Such prediction should be probabilistic, to address the uncertainties in human behavior. Such prediction should also be interactive, since the distribution over all possible trajectories of the predicted vehicle depends not only on historical information, but also on future plans of other vehicles that interact with it. To achieve such interaction-aware predictions, we propose a probabilistic prediction approach based on hierarchical inverse reinforcement learning (IRL). First, we explicitly consider the hierarchical trajectory-generation process of human drivers involving both discrete and continuous driving decisions. Based on this, the distribution over all future trajectories of the predicted vehicle is formulated as a mixture of distributions partitioned by the discrete decisions. Then we apply IRL hierarchically to learn the distributions from real human demonstrations. A case study for the ramp-merging driving scenario is provided. The quantitative results show that the proposed approach can accurately predict both the discrete driving decisions such as yield or pass as well as the continuous trajectories.

Citations (104)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube