Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Machine Teaching of Active Sequential Learners (1809.02869v3)

Published 8 Sep 2018 in cs.LG, cs.AI, cs.HC, and stat.ML

Abstract: Machine teaching addresses the problem of finding the best training data that can guide a learning algorithm to a target model with minimal effort. In conventional settings, a teacher provides data that are consistent with the true data distribution. However, for sequential learners which actively choose their queries, such as multi-armed bandits and active learners, the teacher can only provide responses to the learner's queries, not design the full data. In this setting, consistent teachers can be sub-optimal for finite horizons. We formulate this sequential teaching problem, which current techniques in machine teaching do not address, as a Markov decision process, with the dynamics nesting a model of the learner and the actions being the teacher's responses. Furthermore, we address the complementary problem of learning from a teacher that plans: to recognise the teaching intent of the responses, the learner is endowed with a model of the teacher. We test the formulation with multi-armed bandit learners in simulated experiments and a user study. The results show that learning is improved by (i) planning teaching and (ii) the learner having a model of the teacher. The approach gives tools to taking into account strategic (planning) behaviour of users of interactive intelligent systems, such as recommendation engines, by considering them as boundedly optimal teachers.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.