Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Molecular Hypergraph Grammar with its Application to Molecular Optimization (1809.02745v2)

Published 8 Sep 2018 in cs.LG and stat.ML

Abstract: Molecular optimization aims to discover novel molecules with desirable properties. Two fundamental challenges are: (i) it is not trivial to generate valid molecules in a controllable way due to hard chemical constraints such as the valency conditions, and (ii) it is often costly to evaluate a property of a novel molecule, and therefore, the number of property evaluations is limited. These challenges are to some extent alleviated by a combination of a variational autoencoder (VAE) and Bayesian optimization (BO). VAE converts a molecule into/from its latent continuous vector, and BO optimizes a latent continuous vector (and its corresponding molecule) within a limited number of property evaluations. While the most recent work, for the first time, achieved 100% validity, its architecture is rather complex due to auxiliary neural networks other than VAE, making it difficult to train. This paper presents a molecular hypergraph grammar variational autoencoder (MHG-VAE), which uses a single VAE to achieve 100% validity. Our idea is to develop a graph grammar encoding the hard chemical constraints, called molecular hypergraph grammar (MHG), which guides VAE to always generate valid molecules. We also present an algorithm to construct MHG from a set of molecules.

Citations (97)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.