Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Transfer-Learnable Natural Language Interface for Databases (1809.02649v1)

Published 7 Sep 2018 in cs.AI and cs.CL

Abstract: Relational database management systems (RDBMSs) are powerful because they are able to optimize and answer queries against any relational database. A natural language interface (NLI) for a database, on the other hand, is tailored to support that specific database. In this work, we introduce a general purpose transfer-learnable NLI with the goal of learning one model that can be used as NLI for any relational database. We adopt the data management principle of separating data and its schema, but with the additional support for the idiosyncrasy and complexity of natural languages. Specifically, we introduce an automatic annotation mechanism that separates the schema and the data, where the schema also covers knowledge about natural language. Furthermore, we propose a customized sequence model that translates annotated natural language queries to SQL statements. We show in experiments that our approach outperforms previous NLI methods on the WikiSQL dataset and the model we learned can be applied to another benchmark dataset OVERNIGHT without retraining.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.