Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Stochastically Controlled Stochastic Gradient for the Convex and Non-convex Composition problem (1809.02505v1)

Published 6 Sep 2018 in math.OC, cs.LG, and stat.ML

Abstract: In this paper, we consider the convex and non-convex composition problem with the structure $\frac{1}{n}\sum\nolimits_{i = 1}n {{F_i}( {G( x )} )}$, where $G( x )=\frac{1}{n}\sum\nolimits_{j = 1}n {{G_j}( x )} $ is the inner function, and $F_i(\cdot)$ is the outer function. We explore the variance reduction based method to solve the composition optimization. Due to the fact that when the number of inner function and outer function are large, it is not reasonable to estimate them directly, thus we apply the stochastically controlled stochastic gradient (SCSG) method to estimate the gradient of the composition function and the value of the inner function. The query complexity of our proposed method for the convex and non-convex problem is equal to or better than the current method for the composition problem. Furthermore, we also present the mini-batch version of the proposed method, which has the improved the query complexity with related to the size of the mini-batch.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.