Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Local Music Event Recommendation with Long Tail Artists (1809.02277v1)

Published 7 Sep 2018 in cs.IR and cs.MM

Abstract: In this paper, we explore the task of local music event recommendation. Many local artists tend to be obscure long-tail artists with a small digital footprint. That is, it can be hard to find social tag and artist similarity information for many of the artists who are playing shows in the local music community. To address this problem, we explore using Latent Semantic Analysis (LSA) to embed artists and tags into a latent feature space and examine how well artists with small digital footprints are represented in this space. We find that only a relatively small digital footprint is needed to effectively model artist similarity. We also introduce the concept of a Music Event Graph as a data structure that makes it easy and efficient to recommend events based on user-selected genre tags and popular artists. Finally, we conduct a small user study to explore the feasibility of our proposed system for event recommendation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.