Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Character-Aware Decoder for Translation into Morphologically Rich Languages (1809.02223v5)

Published 6 Sep 2018 in cs.CL

Abstract: Neural machine translation (NMT) systems operate primarily on words (or sub-words), ignoring lower-level patterns of morphology. We present a character-aware decoder designed to capture such patterns when translating into morphologically rich languages. We achieve character-awareness by augmenting both the softmax and embedding layers of an attention-based encoder-decoder model with convolutional neural networks that operate on the spelling of a word. To investigate performance on a wide variety of morphological phenomena, we translate English into 14 typologically diverse target languages using the TED multi-target dataset. In this low-resource setting, the character-aware decoder provides consistent improvements with BLEU score gains of up to $+3.05$. In addition, we analyze the relationship between the gains obtained and properties of the target language and find evidence that our model does indeed exploit morphological patterns.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube