Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DRAG: Deep Reinforcement Learning Based Base Station Activation in Heterogeneous Networks (1809.02159v1)

Published 6 Sep 2018 in cs.NI

Abstract: Heterogeneous Network (HetNet), where Small cell Base Stations (SBSs) are densely deployed to offload traffic from macro Base Stations (BSs), is identified as a key solution to meet the unprecedented mobile traffic demand. The high density of SBSs are designed for peak traffic hours and consume an unnecessarily large amount of energy during off-peak time. In this paper, we propose a deep reinforcement-learning based SBS activation strategy that activates the optimal subset of SBSs to significantly lower the energy consumption without compromising the quality of service. In particular, we formulate the SBS on/off switching problem into a Markov Decision Process that can be solved by Actor Critic (AC) reinforcement learning methods. To avoid prohibitively high computational and storage costs of conventional tabular-based approaches, we propose to use deep neural networks to approximate the policy and value functions in the AC approach. Moreover, to expedite the training process, we adopt a Deep Deterministic Policy Gradient (DDPG) approach together with a novel action refinement scheme. Through extensive numerical simulations, we show that the proposed scheme greatly outperforms the existing methods in terms of both energy efficiency and computational efficiency. We also show that the proposed scheme can scale to large system with polynomial complexities in both storage and computation.

Citations (71)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.