Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi-Expert Gender Classification on Age Group by Integrating Deep Neural Networks (1809.01990v2)

Published 6 Sep 2018 in cs.CV

Abstract: Generally, facial age variations affect gender classification accuracy significantly, because facial shape and skin texture change as they grow old. This requires re-examination on the gender classification system to consider facial age information. In this paper, we propose Multi-expert Gender Classification on Age Group (MGA), an end-to-end multi-task learning schemes of age estimation and gender classification. First, two types of deep neural networks are utilized; Convolutional Appearance Network (CAN) for facial appearance feature and Deep Geometry Network (DGN) for facial geometric feature. Then, CAN and DGN are integrated by the proposed model integration strategy and fine-tuned in order to improve age and gender classification accuracy. The facial images are categorized into one of three age groups (young, adult and elder group) based on their estimated age, and the system makes a gender prediction according to average fusion strategy of three gender classification experts, which are trained to fit gender characteristics of each age group. Rigorous experimental results conducted on the challenging databases suggest that the proposed MGA outperforms several state-of-art researches with smaller computational cost.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.